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Mechanical Load Fault Detection in
Induction Motors by Stator Current

Time-Frequency Analysis
Martin Blödt, Student Member, IEEE, Marie Chabert, Jérémi Regnier, and Jean Faucher, Member, IEEE

Abstract—This paper examines the detection of mechanical
faults in induction motors by an original use of stator current
time-frequency analysis. Mechanical faults lead generally to peri-
odic load torque oscillations. The influence of the torque oscilla-
tions on the induction motor stator current is studied using an
analytical approach. The mechanical fault results in a sinusoidal
phase modulation of the stator current, which is equivalent to
a time-varying frequency. Based on these assumptions, several
signal processing methods suitable for stator current signature
analysis are discussed: classical spectral analysis, instantaneous
frequency estimation, and the Wigner distribution. Experimen-
tal and simulation results validate the theoretical approach in
steady-state operating conditions.

Index Terms—Induction motor fault diagnosis, load unbalance,
mechanical fault, time-frequency analysis, torque oscillations.

I. INTRODUCTION

INDUCTION motors are used in a wide variety of industrial
applications. In order to increase the productivity, reliability,

and safety of an installation containing induction motors, per-
manent and automatic motor condition monitoring is required.

Generally, the motor condition can be supervised by mea-
suring quantities such as noise, vibration, and temperature. The
implementation of such measuring systems is expensive and
proves only to be economical in the case of large motors or
critical applications. A solution to this problem can be the use
of quantities that are already measured in a drive system, e.g.,
the machine’s stator current, which is often required for control
or protection purposes.

This paper investigates the detection of torque oscillations
caused by mechanical faults in induction machines using stator
current time-frequency analysis. In a general way, a fault in the
load part of the drive is seen from the induction machine by a
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variation of the load torque that is no longer constant. Examples
for such faults causing torque oscillations include:

1) general fault in the load part of the drive system, e.g.,
mechanical imbalance, shaft misalignment;

2) gearbox faults, e.g., broken tooth;
3) bearing faults.

Torque oscillations already exist in a healthy motor due to space
and time harmonics of the airgap field. However, the fault-
induced torque oscillations are present at particular frequencies,
often related to the mechanical motor speed.

Thomson mentioned in [1] that mechanical problems in the
load may cause speed oscillations that modulate the motor
input current and lead to additional frequencies in the current
spectrum. Schoen and Habetler have shown in [2] that load
torque oscillations appearing at multiples of the rotational speed
lead to peaks in the stator current spectrum at frequencies

fload = fs ± nfr (1)

where fs is the stator supply frequency, fr is the rotational
frequency, and n = 1, 2, 3, . . . These sidebands are used in [3]
for mechanical fault detection. This paper provides a more
accurate analysis of the type of modulation appearing on the
stator current in case of a load torque oscillation.

In Section II, the influence of load torque oscillations on the
stator current is studied using a magnetomotive force (MMF)
wave approach. It is shown that this type of fault leads to
a phase modulation of a stator current component. Differ-
ent methods for detection such as classical spectral analysis
and time-frequency methods are presented in Section III. In
Section IV, some simulation results illustrate the theoretical
development. Experimental results are discussed more exten-
sively in Section V where the different fault detection tech-
niques are demonstrated with load torque oscillations and a load
unbalance.

II. INFLUENCE OF TORQUE OSCILLATIONS

ON STATOR CURRENT

The method used to study the influence of the periodic
load torque variation on the stator current is based on the
MMF and permeance wave approach [4], [5]. This approach is
traditionally used for the calculation of the magnetic airgap field
with respect to rotor and stator slotting or static and dynamic
eccentricity [6], [7].

First, the rotor and stator MMFs are calculated, which are
directly related to the current flowing in the windings. The
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second important quantity is the airgap permeance Λ, which
is directly proportional to the inverse of the airgap length g.
The magnetic field in the airgap can then be determined by
multiplying the permeance by the sum of rotor and stator
MMFs. The equivalent magnetic flux in one phase is obtained
by integration of the magnetic field in each turn of the phase
winding. The induced phase voltage, related to the current by
the stator voltage equation, is then deduced from the magnetic
flux. This method has been used by the authors in [8] to identify
the consequence of bearing fault related load torque oscillations
on the stator current.

A. Effect on Rotor MMF

Under a mechanical fault, the load torque as a function
of time is modeled by a constant component Γconst and an
additional component varying at the characteristic frequency fc

(which can be for example the rotational frequency fr). The
first term of the variable component Fourier series is a cosine
with frequency fc. For the sake of clarity, higher order terms
are neglected in the following, and only the fundamental term
is considered. The load torque can therefore be described by

Γload(t) = Γconst + Γc cos(ωct) (2)

where Γc is the amplitude of the load torque oscillation and
ωc = 2πfc.

The machine mechanical equation relates the torque oscilla-
tion to the motor speed ωr as follows:

∑
Γ(t) =Γmotor(t) − Γload(t)

=J
dωr

dt
⇔ ωr(t)

=
1
J

∫
t

(Γmotor(τ) − Γload(τ)) dτ (3)

where Γmotor is the electromagnetic torque produced by the
machine and J is the total inertia of the machine and the load.

In steady state, the motor torque Γmotor is equal to the
constant part Γconst of the load torque. The mechanical speed
is then expressed as

ωr(t) = − 1
J

t∫
t0

Γc cos(ωcτ)dτ + C

= − Γc

Jωc
sin(ωct) + ωr0. (4)

The mechanical speed consists therefore of a constant compo-
nent ωr0 and a sinusoidally varying one.

Finally, the mechanical speed integration provides the
mechanical rotor position θr

θr(t) =

t∫
t0

ωr(τ)dτ =
Γc

Jω2
c

cos(ωct) + ωr0t. (5)

Fig. 1. Stator (S) and rotor (R) reference frame.

The integration constant has been assumed to be zero. In con-
trast to the healthy machine where θr(t) = ωr0t, oscillations at
the characteristic frequency are present on the mechanical rotor
position.

The oscillations of the mechanical rotor position θr act on
the rotor MMF. In a normal state, the rotor MMF in the rotor
reference frame (R) is a wave with p pole pairs and a frequency
sfs, given by

F (R)
r (θ′, t) = Fr cos(pθ′ − sωst) (6)

where θ′ is the mechanical angle in the rotor reference frame
(R) and s is the motor slip. Higher order space and time
harmonics are neglected.

Fig. 1 displays the transformation between the rotor and
stator reference frame, defined by θ = θ′ + θr. Using (5), this
leads to

θ′ = θ − ωr0t− Γc

Jω2
c

cos(ωct). (7)

Thus, the rotor MMF given in (6) can be transformed to the
stationary stator reference frame using (7) and the relation
ωr0 = ωs(1 − s)/p

Fr(θ, t) = Fr cos (pθ − ωst− β cos(ωct)) (8)

with

β = p
Γc

Jω2
c

. (9)

Equation (8) clearly shows that the torque oscillations at fre-
quency fc lead to a phase modulation of the rotor MMF in the
stator reference frame. This phase modulation is characterized
by the introduction of the term β cos(ωct) in the phase of the
MMF wave. The parameter β is generally called the modulation
index. For physically reasonable values J , Γc, and ωc, the
approximation β � 1 holds in most cases.

The fault has no direct effect on the stator MMF, and so, it is
considered to have the following form:

Fs(θ, t) = Fs cos(pθ − ωst− ϕs) (10)

where ϕs is the initial phase difference between rotor and stator
MMFs. As in the case of the rotor MMF, only the fundamental
space and time harmonic is taken into account; higher order
space and time harmonics are neglected.
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B. Effect on Flux Density and Stator Current

The airgap flux density B(θ, t) is the product of total MMF
and airgap permeance Λ. The airgap permeance is supposed
constant because slotting effects and eccentricity are not taken
into account for the sake of clarity and simplicity

B(θ, t) = [Fs(θ, t) + Fr(θ, t)] Λ

=Bs cos ( pθ − ωst− ϕs)

+ Br cos ( pθ − ωst− β cos(ωct)) . (11)

The phase modulation of the flux density B(θ, t) exists for
the flux Φ(t) itself, as Φ(t) is obtained by a simple integration
of B(θ, t) with respect to the winding structure. The winding
structure has only an influence on the amplitudes of the flux
harmonic components, not on their frequencies. Therefore,
Φ(t) in an arbitrary phase can be expressed in a general form

Φ(t)=Φs cos(ωst + ϕs) + Φr cos (ωst + β cos(ωct)) . (12)

The relation between the flux and the stator current in a
considered phase is given by the stator voltage equation

V (t) = RsI(t) +
dΦ(t)
dt

. (13)

With V (t) imposed by the voltage source, the resulting stator
current will be in a linear relation to the time derivative of the
phase flux Φ(t) and will have an equivalent frequency content.
Differentiating (12) leads to

d

dt
Φ(t) = −ωsΦs sin(ωst + ϕs)− ωsΦr sin(ωst+β cos(ωct))

+ ωcβΦr sin (ωst + β cos(ωct)) sin(ωct). (14)

The amplitude of the last term is smaller than the amplitude of
the other terms because β � 1. Thus, the last term in (14) will
be neglected in the following.

As a consequence, the stator current in an arbitrary phase can
be expressed in a general form

I(t) = ist(t) + irt(t)

= Ist sin(ωst + ϕs) + Irt sin (ωst + β cos(ωct)) . (15)

Therefore, the stator current I(t) can be considered as the sum
of two components. The term ist(t) results from the stator
MMF, and it is not modulated. The term irt(t), which is a direct
consequence of the rotor MMF, shows the phase modulation
due to the considered load torque oscillations. The healthy case
is obtained for β = 0.

In this paper, the time harmonics of the rotor MMF and the
non-uniform airgap permeance have not been considered. How-
ever, the harmonics of supply frequency fs and the rotor slot
harmonics will theoretically show the same phase modulation
as the fundamental component.

III. SIGNAL PROCESSING METHODS

The previous section has shown that the load torque oscilla-
tions cause a phase modulation on one stator current component
according to (15). It should be noticed that the signal is not
stationary in the faulty case due to the time-varying phase. In
order to detect the phase modulation, several signal processing
methods can be used. In the following paragraphs, three meth-
ods will be presented, and their performances will be discussed.

In order to simplify calculations, all signals will be con-
sidered in their complex form, the so-called analytical signal
[9], [10]. The analytical signal z(t) is related to the real signal
x(t) via the Hilbert Transform H{.}

z(t) = x(t) + jH {x(t)} . (16)

The analytical signal contains the same information as the
real signal, but its Fourier transform (FT) is zero at negative
frequencies.

A. Power Spectral Density (PSD)

1) Definition: The classical method for signal analysis in
the frequency domain is the estimation of the PSD based on
the discrete FT of the signal x. The PSD indicates the distrib-
ution of signal energy with respect to frequency. The common
estimation method for the PSD is the periodogram Pxx(f) [11],
which is defined as the square of the signal’s N-point FT divided
by N

Pxx(f) =
1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πfn

∣∣∣∣∣
2

. (17)

2) Application: The PSD represents the basic signal analy-
sis tool for stationary signals. However, in case of the con-
sidered fault, the stator current signal is no longer strictly
stationary, because the frequency of one signal component is
varying sinusoidally in time.

In the case of a constant supply frequency fs, the PSD can
nevertheless be used to analyze the signal, considering the
phase-modulated signal component given in a complex form by

irt(t) = Irt exp j (ωst + β cos(ωct)) . (18)

Its FT is well known from communication theory [12], and it
can be expressed as follows:

Irt(f) = Irt

+∞∑
n=−∞

jnJn(β)δ (f − (fs + nfc)) (19)

where Jn denotes the nth-order Bessel function of the first
kind and δ(f) is the Dirac delta function. For small modulation
indexes β, the Bessel functions of order n ≥ 2 are very small
and may be neglected (narrowband approximation).
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Using this approximation, the absolute value of the FT |I(f)|
of the stator current (15) in the faulty case can be written as

|I(f)| = (Ist + IrtJ0(β)) δ(f − fs)

+ IrtJ1(β)δ (f − (fs ± fc)) . (20)

It becomes clear through this expression that the fault leads to
sideband components of the fundamental at fs ± fc.

However, the major disadvantage of the PSD is that there ex-
ist other phenomena such as different forms of eccentricity [7]
or bearing faults [8] that may cause spectral components at the
same frequencies. Other types of modulation such as amplitude
modulation have a similar effect on the PSD. Moreover, most
stator current spectra will already contain these frequencies in
practice due to an inherent level of eccentricity.

B. Instantaneous Frequency (IF)

1) Definition: For a complex monocomponent signal z(t) =
a(t)ejϕ(t), the IF fi(t) is defined by [9]

fi(t) =
1
2π

d

dt
ϕ(t) (21)

where ϕ(t) is the instantaneous phase and a(t) is the instanta-
neous amplitude of the analytical signal z(t).

2) Application: The IF of a monocomponent phase-
modulated signal can be calculated using the definition (21).
For the phase-modulated stator current component related to
the rotor MMF [see (18)], it can be expressed as

fi,irt(t) = fs − fcβ sin(ωct). (22)

The fault therefore has a direct effect on the IF of the stator
current component irt(t). In the healthy case, its IF is constant;
in the faulty case, a time-varying component with frequency fc

appears.
If the complex multicomponent signal according to (15) is

considered, the calculation of its IF leads to the following
expression:

fi,I(t) = fs − fcβ sin(ωct)
1

1 + a(t)
(23)

with

a(t) =
I2
st + IstIrt cos (β cos(ωct) − ϕs)
I2
rt + IstIrt cos (β cos(ωct) − ϕs)

. (24)

Using reasonable approximations, it can be shown that 1/(1 +
a(t)) is composed of a constant component with only small
oscillations. Hence, the IF of (15) may be approximated by

fi,I(t) ≈ fs − Cfcβ sin(ωct) (25)

where C is a constant, C < 1. Numerical evaluations confirm
this approximation. It can therefore be concluded, that the
multicomponent signal IF corresponding to the stator current
also shows fault-related oscillations at fc, which may be used
for detection.

C. Wigner Distribution (WD)

1) Definition: The WD can be interpreted as a distribution
of the signal energy in function of time and frequency. It is
defined as follows [10]:

Wx(t, f) =

+∞∫
−∞

x
(
t +

τ

2

)
x∗

(
t− τ

2

)
e−j2πfτdτ. (26)

This formula can be seen as the FT of a kernel Kx(τ, t) with
respect to the delay variable τ . The kernel is similar to an
autocorrelation function.

An interesting property of the WD is its perfect concentration
on the IF in the case of a linear frequency modulation. However,
other types of modulations (e.g., in our case, sinusoidal phase
modulations) produce so-called inner interference terms in the
distribution [13]. Note that the interferences may, however, be
used for detection purposes as it will be shown in the following.

Another important drawback of the distribution is its nonlin-
earity due to the quadratic nature. When the sum of two signals
is considered, so-called outer interference terms appear in the
distribution at time instants or frequencies where there should
not be any signal energy [13].

In practice, the pseudo WD (PWD), which is a smoothed
version of the WD, is often used. PWD is defined as

PWx(t, f) =

+∞∫
−∞

p(τ)x
(
t +

τ

2

)
x∗

(
t− τ

2

)
e−j2πfτdτ (27)

where p(τ) is the smoothing window which reduces the ampli-
tudes of the interference terms.
2) Application: In order to obtain the WD of the stator

current according to (15), the WD of a pure phase-modulated
signal irt(t) [see (18)] will first be calculated.

The WD kernel of a phase-modulated signal can be written as

Kirt(t, τ)= irt

(
t+

τ

2

)
i∗rt

(
t− τ

2

)
= I2

rt exp j
{
ωsτ−2β sin(ωct) sin

(ωc

2
τ
)}

. (28)

The WD is obtained as the FT of the kernel with respect to the
delay τ

Wirt(t, f) = FTτ {Kirt(t, τ)}
= I2

rtFTτ {exp j(ωsτ)}
∗ FTτ

{
exp j

[
−2β sin(ωct) sin

(ωc

2
τ
)]}

(29)

where ∗ denotes the convolution. The FT of the second term
may be calculated in analogy to the FT of a pure phase-
modulated signal [see (19)] using the Jacobi–Anger expansion
[14] given by

ejγ sin θ =
+∞∑

n=−∞
Jn(γ)ejnθ. (30)
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The second term in (29) can therefore be developed into a
Fourier series which allows a simple calculation of its FT

Wirt(t, f) = I2
rtδ(f − fs)

∗ FTτ

{
+∞∑

n=−∞
Jn (−2β sin(ωct)) ejn ωc

2 τ

}

= I2
rt

+∞∑
n=−∞

Jn (−2β sin(ωct)) δ
(
f − fs − n

fc

2

)
.

(31)

For small modulation indexes β, the narrowband approximation
leads to

Wirt(t, f) ≈ I2
rtJ0(γ)δ(f − fs)

+ I2
rtJ1(γ)δ

(
f − fs − fc

2

)

− I2
rtJ1(γ)δ

(
f − fs +

fc

2

)
(32)

with γ = −2β sin(ωct).
The WD of the considered pure phase-modulated signal is

therefore a central frequency at fs with sidebands at fs ± fc/2.
All the components have time-varying amplitudes at frequency
fc, as γ is a function of time. It is important to notice that the
lower sideband has the opposed sign to the upper sideband.

As the stator current signal is considered as the sum of two
components, a phase-modulated signal and a pure frequency
[see (15)], its WD must be calculated according to the following
expression for the sum of two signals x + y [10]:

Wx+y(t, f)=Wx(t, f)+Wy(t, f)+2Re {Wxy(t, f)} (33)

with

Wxy(t, f) =

+∞∫
−∞

x
(
t +

τ

2

)
y∗

(
t− τ

2

)
e−j2πfτdτ. (34)

The WD of the pure frequency ist(t) = Ist sin(ωst + ϕs) [first
term of (15)] is given by I2

stδ(f − fs). A detailed calculation
of the cross terms Wistirt shows that they are of small am-
plitude and that they do not introduce new frequency compo-
nents. Thus, the cross terms may be neglected in this case,
and the following approximate expression is obtained for the
WD of (15):

Wist+irt(t, f) ≈ (
I2
rtJ0(γ) + I2

st

)
δ(f − fs)

+ I2
rtJ1(γ)δ

(
f − fs − fc

2

)

− I2
rtJ1(γ)δ

(
f − fs +

fc

2

)
. (35)

In contrast to the pure phase-modulated signal, the constant
component Ist is present at the fundamental frequency. In a
logarithmic plot, this constant component will hide the oscil-

lations of the fundamental due to its greater amplitude, and the
frequency fs will appear constant in time as can be seen in the
experimental results.

D. Spectrogram

The spectrogram is a time-frequency distribution based on
the FT of the product of a sliding window h(t) with the signal.
It is given by the following expression for a signal x(t) [10]:

Sx(t, f) =

∣∣∣∣∣∣
+∞∫

−∞
x(τ)h∗(τ − t)e−j2πfτdτ

∣∣∣∣∣∣
2

. (36)

In comparison to the WD, the spectrogram shows no interfer-
ence terms outside the signal components time-frequency sup-
port in case of multicomponent signals or nonlinear frequency
modulations. However, a great disadvantage is the reduced
resolution power compared to the WD. The length of the sliding
window h∗(t) determines time and frequency resolution, i.e.,
a good frequency resolution needs a long observation window
and therefore leads to a bad localization in time and vice versa
[10]. Moreover, the window length has to be chosen based on a
prior knowledge of the signal.

E. Summary

It has been shown that several signal processing methods can
be used for the detection of load torque oscillations. Classical
spectral analysis based on the PSD can give a first indication of
a possible fault by an increase of sidebands at fs ± fr. As other
phenomena produce similar sidebands, it is not possible to iden-
tify the phase modulations without ambiguity. The IF can be
used to detect phase modulations if the signal is monocompo-
nent. A global time-frequency signal analysis is possible using
the WD or PWD where a characteristic interference structure
appears in presence of the phase modulations. The spectrogram
is a time-frequency distribution with limited resolution, so that
it is not suitable for a direct stator current analysis. However, it
will be shown in the following that it can effectively be used in
combination with the IF estimation.

IV. SIMULATION RESULTS

Simulations have been carried out using two different ma-
chine models: first, a standard space phasor model in the sta-
tionary reference frame, and second, a more detailed machine
model based on magnetically coupled electric circuits [15].
Both simulations show that the predicted interference structure
is visible on the PWD of the current signals with load torque
oscillations. As an example, the machine has been loaded with
15-N · m average torque (nominal torque is 35 N · m) and
a torque oscillation with amplitude Γc = 0.2 N · m, and fre-
quency fc = fr ≈ fs/p has been turned on in the middle of
the simulation. Then, the PWD of both current signals is
calculated. Fig. 2 shows the result from the model based on
magnetically coupled electric circuits, Fig. 3 from the space
phasor simulation. The theoretically calculated interference
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Fig. 2. PWD of simulated current signal with apparition of load torque
oscillation (magnetically coupled electric circuits).

Fig. 3. PWD of simulated current signal with apparition of load torque
oscillation (space phasor model).

Fig. 4. IF of simulated current signal with apparition of load torque oscillation
(magnetically coupled electric circuits).

structure at fs ± fc/2 is clearly visible in both time-frequency
distributions. Only slight differences in amplitude exist between
the two simulations. Further simulations at higher and lower
load levels always show the same effects on the PWD.

The calculation of the stator current IF for the previous
signal leads to the result displayed in Fig. 4. Small oscillations
are already present in the healthy current IF. The load torque
oscillation starting at 0.6 s leads to significant IF oscillations.

As the simulations agree with the theory and the experimen-
tal results, only the last will be commented in details. As a
conclusion, it can be stated that the simple machine model is
well suited to correctly represent the effect of the load torque
oscillation, and therefore, there is no need in this case for a
time-intensive and detailed simulation.

Fig. 5. Scheme of experimental setup.

Fig. 6. PSD of the measured torque in healthy case and with small load torque
oscillation.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Tests have been conducted on a test rig with a 5.5-kW Leroy
Somer induction machine (see Fig. 5). The motor has two
pole pairs and a nominal torque of 35 N · m. The machine
is supplied by a standard industrial inverter with a constant
voltage-to-frequency ratio. The load is a magnetic powder brake
supplied by a function generator coupled to a voltage-controlled
oscillator. This allows the production of periodic load torque
oscillations. The load torque is measured by a rotating torque
transducer. The torque signal, current, and voltage measure-
ments are acquired at a sampling rate of 25 kHz by a 24-bit
data-acquisition board. The further signal processing is done
using Matlab and the time-frequency toolbox [16].

B. Results at Small Load

The powder brake is used to produce an oscillating load
torque at the rotational frequency which is slightly inferior to
25 Hz. The motor is loaded in the first tests with about 9-N · m
average torque (recall that its nominal torque is about 35 N · m).

The measured load torque (see Fig. 6) shows an increase
of its spectral component at 25 Hz of about 13 dB between
the faulty and the healthy case, which confirms that the
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Fig. 7. PSD of measured stator current in healthy case and with small load
torque oscillation.

Fig. 8. PWD of measured current signal with apparition of load torque
oscillation.

powder brake produces correctly the load torque oscillations.
The amplitude of the torque oscillations is about 1% (−40 dB
on the PSD) of the amplitude of the constant component which
corresponds to 0.09 N · m.

The effect of the torque oscillation on the stator current can
clearly be observed in Fig. 7 where the PSD of the stator
current is shown for the healthy and the faulty case. Spectral
components at fs ± fr can already be noticed in the healthy
state due to phenomena like a natural level of eccentricity.
In the faulty case with a small load torque oscillation, these
components show a considerable increase of about 20 dB. The
apparition of these sidebands corresponds to the theoretical
prediction in (20).

In another test, the load torque oscillations of the same
amplitude as before have been turned on in the middle of a
data acquisition in order to study a sudden fault apparition. In
this case, the classical spectral analysis is not an adequate tool
any more, because the signal is a transient nonstationary signal.
The stator current has therefore been analyzed using a time-
frequency distribution, the PWD, which is a smoothed version
of the WD [10]. The result is shown in Fig. 8. When the load
torque oscillation appears, an interference structure becomes
visible in the PWD. As the stator current is a multicomponent
signal due to supply harmonics, the signal has been low-pass
filtered at twice the fundamental frequency and downsampled
before calculating the PWD.

Fig. 9. Zoom on PWD of the measured current signal with load torque
oscillation.

Fig. 10. Stator current IF with apparition of load torque oscillation.

Fig. 11. Spectrogram of stator current IF with apparition of load torque
oscillation.

A zoom on the interference structure (see Fig. 9) reveals that
it corresponds to the theoretical WD calculated in the preceding
section [see (32)]. The interference terms are sideband compo-
nents at fs ± fc/2 with opposed amplitudes for a given time
instant. It is also visible that the sidebands are oscillating at
25 Hz as predicted in the theoretical development.

Another possibility to analyze the current signal is the esti-
mation of its IF. If the signal is low-pass filtered at twice the
fundamental frequency, it can be considered as a monocompo-
nent signal, and its IF has a physical sense. The stator current
IF estimation is shown at Fig. 10. In a healthy condition, the
IF of the stator current fundamental is theoretically a constant
signal at fs = 50 Hz, but in reality, it shows small oscillations.
When the fault appears at 0.6 s, the IF starts to oscillate at the
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Fig. 12. PSD and PWD of measured current signal with apparition of load torque oscillation, higher load. (a) PSD. (b) PWD.

Fig. 13. Photograph of unbalanced load and PSD of measured torque with and without load unbalance. (a) Unbalanced load. (b) PSD of measured torque.

fault characteristic frequency fc, which is in this case about
25 Hz. This result validates the theoretical considerations in the
preceding sections.

An interesting alternative to the IF time-domain analysis can
be a time-frequency representation of the IF. Fig. 11 shows the
spectrogram of the stator current IF. It is clearly visible that at
the instant of the fault, a spectral component appears at about
25 Hz. Before the calculation of the spectrogram, the average
value of the IF has been subtracted in order to remove unneces-
sary information. Time-frequency analysis of the stator current
IF can therefore provide a good fault indicator.

C. Results at Higher Load

In order to test the methods under heavier load, the average
load torque has been increased to about 20 N · m. The measured
load torque shows an increase of 12 dB at the characteristic
frequency fc compared to the healthy case. The amplitude of
the measured torque oscillations is about 1/700 of the amplitude
of the constant component, which corresponds to 0.03 N · m.

The PSD of the healthy and faulty current under load con-
dition is shown in Fig. 12(a). The results are very similar to
the preceding case with only a small load. The spectral lines at
fs ± fr show a considerable increase in presence of the fault.

A time-frequency analysis of the stator current signal with
an appearing load torque oscillation is shown in Fig. 12(b). The
PWD shows the same fault-related interference structure as in
the tests under small load. The application of the other methods
used in the preceding section showed the same results.

D. Results With Load Unbalance

Until now, only torque oscillations produced by a powder
brake were studied. In order to produce a realistic mechanical
fault, a load unbalance is introduced. A small mass m is fixed
on a disk mounted on the motor shaft [see Fig. 13(a)]. Different
distances r from the center can be chosen. This load unbalance
theoretically creates a sinusoidal load torque oscillation at
rotational frequency fr and with amplitude Γc = mgr, where
g is the acceleration of gravity. Furthermore, an additional
centrifugal force acts on the shaft, which could lead to an
increased level of eccentricity. However, this force does not
directly affect the torque, and thus, it is not considered in the
following.

Tests are conducted with a mass m = 77 g at r = 50 mm,
leading theoretically to an amplitude Γc = 0.04 N · m. In order
to reduce centrifugal forces and vibration, the motor is supplied
at frequency fs = 25 Hz. The PSD of the measured load torque
with and without load unbalance is displayed in Fig. 13(b). An
increase at rotational frequency fr ≈ 12.5 Hz is clearly visible,
demonstrating that a load unbalance leads to a measurable
increase of torque oscillations at fr.

The time-frequency analysis of the stator current yields the
following results. The PWD of the stator current at small
load is displayed in Fig. 14 for the healthy case and with
the load unbalance. The oscillating interference structure is
visible at fs ± fr/2 = 25 ± 12.5 Hz in the faulty case which
corroborates the preceding considerations. The IF of these two
signals is shown in Fig. 15(a). Oscillations exist in the healthy
and faulty case. Therefore, the time waveform cannot indicate
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Fig. 14. PWD of stator current in healthy case and with unbalanced load, fs = 25 Hz, small load. (a) Healthy. (b) Load unbalance.

Fig. 15. IF and PSD of IF in healthy case and with unbalanced load, fs = 25 Hz, small load. (a) IF. (b) PSD of IF.

the fault in this case due to the relatively small amplitude of Γc.
However, the PSD of the IF [see Fig. 15(b)] shows an increase
of more than 10 dB at fr with the load unbalance. Therefore, it
has been demonstrated that a more realistic fault such as a load
unbalance can be detected using the proposed time-frequency
stator current analysis.

VI. CONCLUSION

The present paper has examined the detection of mechanical
fault-related load torque oscillations in induction motors using
a stator current monitoring. An accurate theoretical analysis
has shown the link between the torque oscillation and a phase
modulation of a stator current component. Two classes of signal
processing methods have been presented: classical spectral
analysis and time-frequency analysis. The interest of time-
frequency signal analysis in this context is the detection of the
phase modulation, which is ambiguous using classical spectral
analysis. Moreover, it is possible to detect the exact moment
when the fault appears. The employed time-frequency methods
are the WD and IF estimation. The theoretical considerations
have been validated on simulation and experimental results. It
has therefore been shown that time-frequency signal analysis
represents a useful tool for current-based condition monitoring
and mechanical fault detection.
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